202 未解 (第2/2页)
老林的书房里点着一盏微灯,透过窗棱,他正在伏案工作,专心致志。
林朝夕看了一会儿,可能是心灵感应。老林在不经意间抬起头,在看到她的瞬间,老林目光温
柔,笑盈盈地。
林朝夕推门进屋,老林放下笔,像她无数次找到老林,老林都会为她放下笔那般。
"今天在学校过的怎么样?
“不怎么样。”
“唯~有心事啊。"
“你觉得我是天学吗?“林朝夕托腮问道。她视线下垂,看到老林写了满页的数字符号,她好像岛
心目中的答案又远了一些。
老林开始沉吟,神情认真专注。
林朝夕也开始安静等待。
半响后,老林砸了下嘴,林朝夕下意识坐面身体,却听老林说了两个字
"你猜?"
“爸爸你这是什么回答!"
"你再猜"
林朝.
“这都猜不中,你怎么做天才?"
“我怎么猜嘛!"
'来来。"老林做了个手势,挺起胸膛说,“换你来问我那个问题。
林朝夕愣了,而后说:“老林,你是天手吗
在木桌对面,老林笑了起来。
“是啊。"
他这么说。
如果裴之的电话能够接通,林朝夕大概也会打电话问一问裴哥这个问题
虽然裴之低调内敛,但如果她问,裴之的答案大概也会和老林一样平静自然。
-是啊。
所以她的问题在于不够自信
林朝夕说不上来
既然说不上来,就当作是个小插曲,林朝夕看着老林的案板,问:“你的工作进度怎么样?"
斤有进展背后都是思想的革新,你看贝叶斯提出先验概率,认为概率是主观是、不断变化的参
数,改变了频率学派原有概率客观的看法。"老林把草稿纸翻到背面,随后画了两个图案,标明定
点,“你看啊,这是两个图,我们怎么判定两图是否同构?”
林朝夕;“它们有相同数目的顶点,相同数目的边,它们的点与点、边与边之间一一对应,并保持
点和边之间的关联关系不变。"
背挺熟。"老林笑了下,“根据图同构的足义,G与G'同构的充要条是他们有相同的关联矩阵。
*嗯。"林朝夕认真听了下去
“我曾经在序列法上走过弯路,但它让我在如何判定两图同构上有了新的想法。
*你看啊,根据定义1,如果图G中n个点以及连接这n个点之间的边是连通的,那么这个图称为图
G的n点的连通子图,记G(Vn);根据定文2......
老林边说,边手上不停地开始写了起来。
林朝夕一开始还能听懂他所阐述的足义部分,但到老林开始证G1G2相同关联矩阵,她就听得床
难了。
她有时皱眉,有时又很想让老林讲慢点,但老林没有像往常一样关注她的反应,换上通俗易懂的
解释,停下来教她
这次老林从一开始就沉漫在他的数学世界里,他时而陷人长时间深思,时而又开始不间断地平静
叙述。
他像是黑喑舞台上的演员,她是台下唯一的观众。
就算她闭着眼时,都能想象老林内心手舞足路、兴高采烈,陷入莫大愉悦的状态
无需交流不用赞叹。
她坐在这里,听着就很好。
"所以,我现在要解决的部分,就是更好地在在求S(n)中减少同构判定的工作量。"老林眼腊发
亮,用自信的语气做总结。
过了一会川,林朝夕主点了点头
桌面上是老林的草稿,这些是她虽然着不明白,但却必须搞明白带走的东西
窗外兽色四合,院里的草木随风轻摆,时间所剩无几,她准备出去煮个咖啡,回来继续。